首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3731篇
  免费   357篇
  国内免费   518篇
  2023年   62篇
  2022年   61篇
  2021年   88篇
  2020年   195篇
  2019年   183篇
  2018年   182篇
  2017年   157篇
  2016年   166篇
  2015年   174篇
  2014年   143篇
  2013年   335篇
  2012年   125篇
  2011年   209篇
  2010年   122篇
  2009年   232篇
  2008年   207篇
  2007年   226篇
  2006年   187篇
  2005年   218篇
  2004年   153篇
  2003年   184篇
  2002年   140篇
  2001年   95篇
  2000年   63篇
  1999年   76篇
  1998年   61篇
  1997年   68篇
  1996年   28篇
  1995年   61篇
  1994年   63篇
  1993年   31篇
  1992年   35篇
  1991年   32篇
  1990年   27篇
  1989年   33篇
  1988年   17篇
  1987年   18篇
  1986年   15篇
  1985年   19篇
  1984年   19篇
  1983年   11篇
  1982年   23篇
  1981年   11篇
  1980年   11篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1974年   3篇
  1973年   3篇
排序方式: 共有4606条查询结果,搜索用时 300 毫秒
101.
Cicuta virosa L. plants can grow in a pond subjected to heavy‐metal inputs at the Hitachi mine, eastern Japan. They accumulate heavy‐metal elements, especially high concentrations of zinc (Zn), in their roots. We focused on the role that root bacterial endophytes play in the heavy‐metal uptake of plants and the provision of heavy‐metal tolerance within plants. Our purpose was to clarify the effects of endophytes on: (i) Zn accumulation in C. virosa roots; (ii) growth of C. virosa seedlings; and (iii) heavy‐metal tolerance of C. virosa plants. Root endophytic Pseudomonas putida and Rhodopseudomonas sp., which induced the high production of Zn‐chelating compounds, were selected for the seedling inoculation test. The results of the inoculation test demonstrated that both strains of endophytes increased Zn accumulation in C. virosa roots by solubilizing Zn in the sediment. Both strains also increased the growth of seedlings by possible production of indole‐3‐acetic acid in the plant. The heavy‐metal tolerance of C. virosa seedlings was likely promoted by producing metal‐chelating compounds that detoxify the metals in the plant tissues, and by decreasing the heavy‐metal contents in the tissues via rapid seedling growth. Thus, such mutualistic interactions between plants and bacteria contribute to the persistence of C. virosa in this severe environment.  相似文献   
102.
In this study, distribution of metal accumulation and their biological changes of Indian mustard plants (Brassica nigra L.) grown in soil irrigated with different concentration of rayon grade paper effluent (RGPE, 25%, 50%, 75%, 100%, v/v) were studied. A pronounced effect was recorded at 50% (v/v) RGPE on germination of seeds, amylase activity and other growth parameters in Indian mustard plants. An increase in the chlorophyll and protein contents was also recorded at <50% (v/v) RGPE followed by a decrease at higher concentrations of RGPE (>75%). A significant increase lipid peroxidation was recorded, which was evidenced by the increased malondialdehyde (MDA) content in shoot, leaves and seeds in tested plant at all the concentrations of RGPE. This Indian mustard plants (Brassica nigra L.) are well adapted for tolerance of significant amount of heavy metals due to increased level of antioxidants (cysteine and ascorbic acid) in root shoot and leaves of treated plants at all concentration of RGPE. Moreover, it is also important that RGPE should be treated to bring down the metal concentration well within the prescribed limit prior to use in agricultural soil for ferti-irrigation.  相似文献   
103.
104.
The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex.  相似文献   
105.
Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation.  相似文献   
106.
Mammalian immune receptor diversity is established via a unique restricted set of site-specific DNA rearrangements in lymphoid cells, known as V(D)J recombination. The lymphoid-specific RAG1-RAG2 protein complex (RAG1/2) initiates this process by binding to two types of recombination signal sequences (RSS), 12RSS and 23RSS, and cleaving at the boundaries of RSS and V, D, or J gene segments, which are to be assembled into immunoglobulins and T-cell receptors. Here we dissect the ordered assembly of the RAG1/2 heterotetramer with 12RSS and 23RSS DNAs. We find that RAG1/2 binds only a single 12RSS or 23RSS and reserves the second DNA-binding site specifically for the complementary RSS, to form a paired complex that reflects the known 12/23 rule of V(D)J recombination. The assembled RAG1/2 paired complex is active in the presence of Mg2+, the physiologically relevant metal ion, in nicking and double-strand cleavage of both RSS DNAs to produce a signal-end complex. We report here the purification and initial crystallization of the RAG1/2 signal-end complex for atomic-resolution structure elucidation. Strict pairing of the 12RSS and 23RSS at the binding step, together with information from the crystal structure of RAG1/2, leads to a molecular explanation of the 12/23 rule.  相似文献   
107.
Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L?1 and significantly decreased with increasing SO4. Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm?2. Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4. Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号